2015
DOI: 10.1007/s10649-015-9658-3
|View full text |Cite
|
Sign up to set email alerts
|

Strategies and performance in elementary students’ three-digit mental addition

Abstract: Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provide… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

2
13
0
3

Year Published

2018
2018
2023
2023

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 19 publications
(18 citation statements)
references
References 28 publications
2
13
0
3
Order By: Relevance
“…Furthermore, and somewhat ironically, students who have the highest working memory capacity avoid using advanced problem-solving strategies when they are high in math anxiety. This can partially explain why students who spontaneously use the SWA perform better than students who use more advanced strategies, in the current observation as in others (e.g., Torbeyns & Verschaffel, 2013, 2016.…”
Section: Swas Raise Conative Attractivenesssupporting
confidence: 71%
“…Furthermore, and somewhat ironically, students who have the highest working memory capacity avoid using advanced problem-solving strategies when they are high in math anxiety. This can partially explain why students who spontaneously use the SWA perform better than students who use more advanced strategies, in the current observation as in others (e.g., Torbeyns & Verschaffel, 2013, 2016.…”
Section: Swas Raise Conative Attractivenesssupporting
confidence: 71%
“…Instead it is assumed that continuous experience in solving problems combined with the acquisition of conceptual knowledge will result in the generation of new strategies and its adaptive application. Empirical results on adaptive use of strategies of primary school children from different countries challenge this assumption (e.g., Carpenter et al 1997;Csíkos 2016;Selter 2001;Torbeyns et al 2006;Heinze et al 2009;Torbeyns et al 2009a, b). It turns out that most children do not use addition and subtraction strategies adaptively with respect to task characteristics (e.g., Heinze et al 2009;Torbeyns et al 2009a, b;Torbeyns and Verschaffel 2016).…”
Section: Theoretical Perspectives On the Teaching And Learning Of Adamentioning
confidence: 99%
“…Instead many students have a favourite strategy which they use as a standard procedure (German children frequently prefer the jump strategy for subtraction tasks and the split strategy for addition tasks, Heinze et al 2009, and they almost solely use the standard algorithms after their introduction, Selter 2001). Children rarely apply task-specific strategies like indirect addition (Csíkos 2016;Heinze et al 2009;Selter 2001;Torbeyns et al 2009a) so that it can be called into question whether such strategies can be self-generated in grade 2 or 3.…”
Section: Theoretical Perspectives On the Teaching And Learning Of Adamentioning
confidence: 99%
“…Bár a helyes megoldások száma 72% (lásd 4. ábra), mégsem mondhatjuk, hogy a hallgatók nem tudták megoldani ezt a feladatot, hiszen az (A) választ, mint leggyakoribb rossz választ a hallgatók 15%-a jelölte be megoldásként és ez helyes megoldása a feladatnak, csak a megoldást ekkor nem tizedestört alakban kaptuk meg. Érdemes megfigyelni, hogy a (C) és (D) válaszokat együttesen a hallgatók 13%-a jelölte be, ezek a válaszok azonban ép-pen a pontos számolás ellenőrzését szolgálták (Csíkos, 2016), így ez a szám nem igazán megnyugtató.…”
Section: A Tesztfeladatok Bemutatásaunclassified
“…Eléggé aggasztó azonban a 10%-os (A) válaszok, mint leggyakoribb rossz válaszok száma, hiszen ez a válasz egy elvi hibás gondolatmenetre utal a helyiértékes írásmóddal kapcsolatban. Ez a feladat azonban nemcsak a pontos helyiértékes írásmód, hanem a pontos számolás ellenőrzé-sére is szolgál (Csíkos, 2016), ilyen szemszögből nem igazán megnyugtató a 6%-os (D) válaszok száma, amely a pontatlan számolásra utal.…”
Section: A Tesztfeladatok Bemutatásaunclassified