Combining synthetic biology with adoptive T-cell transfer has led to promising advances in the treatment of relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL), diffuse large B-cell lymphoma (DLBCL), and mantle cell lymphoma (MCL). Chimeric antigen receptors (CARs) are synthetic receptors that redirect T-cell specificity against cancer. CARs include “built-in” signaling domains that reprogram T-cell metabolism, enhance effector function, and support long-term persistence. Despite their success in blood-based malignancies, relapse can occur in CD19-redirected CAR T-cell therapies for several reasons, including poor engraftment, impaired in vivo proliferation, and T-cell senescence. Herein, we explain how subtle alterations in CAR design may overcome barriers to effective adoptive immunotherapy. We also discuss how the physiochemical properties of the single-chain variable fragment (scFv) affect differentiation and persistence. Moreover, we describe innovative advances in CAR engineering and provide insight into the development of humanized scFvs whose proposed benefits include increased persistence and improved clinical outcomes. Tumor cells can evade CAR T-cell–mediated detection and elimination due to the emergence or presence of CD19-negative leukemic cell subpopulations. We also discuss the opportunities and challenges in targeting other B-ALL–associated antigens. Identifying alternate targets is fundamentally necessary to restore the success of CAR T-cell therapies in CD19-negative patients with B-ALL.