The bioconversion of lignocellulosic biomass, which are abundant and renewable resources, into liquid fuels and bulk chemicals is a promising solution to the current challenges of resource scarcity, energy crisis, and carbon emissions. Considering the separation of some end-products, it is necessary to firstly obtain a high concentration separated fermentable sugar solution, and then conduct fermentation. For this purpose, in this study, using acid catalyzed steam explosion pretreated corn stover (ACSE-CS) and corn cob residues (CCR) as cellulosic substrate, respectively, the batch feeding strategies and enzymatic hydrolysis conditions were investigated to achieve the efficient enzymatic hydrolysis at high solid loading. It was shown that the fermentable sugar solutions of 161.2 g/L and 205 g/L were obtained, respectively, by fed-batch enzymatic hydrolysis of ACSE-CS under 30% of final solid loading with 10 FPU/g DM of crude cellulase, and of CCR at 27% of final solid loading with 8 FPU/g DM of crude cellulase, which have the potential to be directly applied to the large-scale fermentation process without the need for concentration, and the conversion of glucan in ACSE-CS and CCR reached 80.9% and 87.6%, respectively, at 72 h of enzymatic hydrolysis. This study also applied the fed-batch simultaneous saccharification and co-fermentation process to effectively convert the two cellulosic substrates into ethanol, and the ethanol concentrations in fermentation broth reached 46.1 g/L and 72.8 g/L for ACSE-CS and CCR, respectively, at 144 h of fermentation. This study provides a valuable reference for the establishment of “sugar platform” based on lignocellulosic biomass and the production of cellulosic ethanol.