Various classification theorems of thick subcategories of a triangulated category have been obtained in many areas of mathematics. In this paper, as a higher-dimensional version of the classification theorem of thick subcategories of the stable category of finitely generated representations of a finite p-group due to Benson, Carlson and Rickard, we consider classifying thick subcategories of the stable category of Cohen-Macaulay modules over a Gorenstein local ring. The main result of this paper yields a complete classification of the thick subcategories of the stable category of Cohen-Macaulay modules over a local hypersurface in terms of specialization-closed subsets of the prime ideal spectrum of the ring which are contained in its singular locus.