The eruptive history of Monte Vulture has been the subject of several geochronological investigations during the past decades, which reliably dated only a small number of eruptions. Understanding the causes of suboptimum data yield in the past requires an interdisciplinary approach. We re-analyzed samples from previous works and present new data on samples from the main volcanostratigraphic units of Monte Vulture, so as to provide an improved, consistent chronostratigraphic database. Imaging of minerals by cathodoluminescence and backscattered electrons reveals that heterochemical, high-temperature deuteric reaction textures are ubiquitous. Such observations are common in metamorphic rocks but had not frequently been reported from volcanic rocks. In view of the mineralogical complexity, we base our chronological interpretation on isochemical steps, defined as steps for which the Cl/K and/or the Ca/K ratios are constant. Isochemical steps carry the isotopic signature of chemically homogeneous mineral phases and therefore allow a wellconstrained age interpretation. Comparison of old and new 39 Ar-40 Ar data proves the reproducibility of age spectra and their shapes. This quantifies the analytical reliability of the irradiation and mass-spectrometric analyses. Anomalous age spectra are a reproducible property of some specific samples and correlate with mineralogical anomalies. The present data allow us to fine-tune the age of the volcanostratigraphic units of Monte Vulture during the known interval of main volcanic activity from ca. 740 to 610 ka. After a very long stasis, the volcanic activity in the Monte Vulture area resumed with diatremic eruptions, one of which (Lago Piccolo di Monticchio, the site of a palynologicalpaleoclimatological drilling) was dated at ca. 140 ka.