Abstract. The evolution of intra-plate orogens is still poorly understood. Yet, this is of major importance for understanding the Earth and plate dynamic, as well as the link between surface and deep geodynamic processes. The French Massif Central is an intraplate orogen with a mean elevation of 1000 m, with the highest peak elevations ranging from 1500 m to 1885 m. However, active deformation of the region is still debated due to scarce evidence either from geomorphological or geophysical (i.e. geodesy and seismology) data. Because the Cévennes margin allows the use of karst sediments geochronology and morphometrical analysis, we study the vertical displacements of that region: the southern part of the French Massif-Central. Geochronology and morphometrical results, helped with lithospheric-scale numerical modelling, allow, then, a better understanding of this intraplate-orogen evolution and dynamic. Using the ability of the karst to durably record morphological evolution, we first quantify the incision rates. We then investigate tilting of geomorphological benchmarks by means of a high-resolution DEM. We finally use the newly quantified incision rates to constrain numerical models and compare the results with the geomorphometric study. We show that absolute burial age (10Be/26Al on quartz cobbles) and the paleomagnetic analysis of karstic clay deposits for multiple cave system over a large elevation range correlate consistently. This correlation indicates a regional incision rate of 83.4 +17.3/−5.4 m Ma−1 during the last ca 4 Myrs (Plio-Quaternary). Moreover, we point out through the analysis of 55 morphological benchmarks that the studied region has undergone a regional southward tilting. This tilting is expected as being due to a differential vertical motion between the north and southern part of the studied area. Numerical models show that erosion-induced isostatic rebound can explain up to two-thirds of the regional uplift deduced from dating technics and are consistent with the southward tilting obtain from morphological analysis. We presume that the remaining part is related to dynamic topography or thermal isostasy due to the Massif Central plio-quaternary magmatism.