Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Unconformities in foreland basins may be generated by tectonic processes that operate in the basin, adjacent fold-thrust belt, and broader convergent margin. Foreland basin unconformities represent shifts from high accommodation to nondepositional or erosional conditions in which the interruption of subsidence precludes net sediment accumulation. This study explores the genesis of long duration (>1–20 Myr) unconformities and condensed stratigraphic sections by considering modern and ancient examples from the Andes. These cases highlight potential geodynamic mechanisms of accommodation reduction and hiatus development in Andean-type retroarc foreland settings, including: (a) shortening-induced uplift in the frontal thrust belt and proximal foreland; (b) growth and advance of a broad, low-relief flexural forebulge; (c) uplift of intraforeland basement blocks; (d) tectonic quiescence with regional isostatic rebound; (e) cessation of thrust loading and flexural subsidence during oblique convergence; (f) diminished accommodation or sediment supply due to changes in sea level, climate, erosion, or transport; (g) basinwide uplift during flat-slab subduction; and (h) dynamic uplift associated with slab window formation, slab breakoff, elevated intraplate (in-plane) stress, or related mantle process. These contrasting mechanisms can be distinguished on the basis of the spatial distribution, structural context, stratigraphic position, paleoenvironmental conditions, and duration of unconformities and condensed sections.Thematic collection: This article is part of the Fold-and-thrust belts collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-belts
Unconformities in foreland basins may be generated by tectonic processes that operate in the basin, adjacent fold-thrust belt, and broader convergent margin. Foreland basin unconformities represent shifts from high accommodation to nondepositional or erosional conditions in which the interruption of subsidence precludes net sediment accumulation. This study explores the genesis of long duration (>1–20 Myr) unconformities and condensed stratigraphic sections by considering modern and ancient examples from the Andes. These cases highlight potential geodynamic mechanisms of accommodation reduction and hiatus development in Andean-type retroarc foreland settings, including: (a) shortening-induced uplift in the frontal thrust belt and proximal foreland; (b) growth and advance of a broad, low-relief flexural forebulge; (c) uplift of intraforeland basement blocks; (d) tectonic quiescence with regional isostatic rebound; (e) cessation of thrust loading and flexural subsidence during oblique convergence; (f) diminished accommodation or sediment supply due to changes in sea level, climate, erosion, or transport; (g) basinwide uplift during flat-slab subduction; and (h) dynamic uplift associated with slab window formation, slab breakoff, elevated intraplate (in-plane) stress, or related mantle process. These contrasting mechanisms can be distinguished on the basis of the spatial distribution, structural context, stratigraphic position, paleoenvironmental conditions, and duration of unconformities and condensed sections.Thematic collection: This article is part of the Fold-and-thrust belts collection available at: https://www.lyellcollection.org/cc/fold-and-thrust-belts
A Bayesian Belief Network (BN) has been developed to predict fractures in the subsurface during the early stages of oil and gas exploration. The probability of fractures provides a first-order proxy for spatial variations in fracture intensity at a regional scale. Nodes in the BN, representing geologic variables, were linked in a directed acyclic graph to capture key parameters influencing fracture generation over geologic time. The states of the nodes were defined by expert judgment and conditioned by available datasets. Using regional maps with public data from the Horn River Basin in British Columbia, Canada, predictions for spatial variations in the probability of fractures were generated for the Devonian Muskwa shale. The resulting BN analysis was linked to map-based predictions via a geographic information system. The automated process captures human reasoning and improves this through conditional probability calculations for a complex array of geologic influences. A comparison between inferred high fracture intensities and the locations of wells with high production rates suggests a close correspondence. While several factors could account for variations in production rates from the Muskwa shale, higher fracture densities are a likely influence. The process of constructing and cross-validating the BN supports a consistent approach to predict fracture intensities early in exploration and to prioritize data needed to improve the prediction. As such, BNs provide a mechanism to support alignment within exploration groups. As exploration proceeds, the BN can be used to rapidly update predictions. While the BN does not currently represent time-dependent processes and cannot be applied without adjustment to other regions, it offers a fast and flexible approach for fracture prediction in situations characterized by sparse data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.