Ozone (O 3) is a tri-atomic form of oxygen, that is, three atoms of oxygen bonded together. It is an unstable gas with distinctive sharp odor. Under normal conditions, ozone is unstable and rapidly decomposes to a more stable gaseous form of molecular oxygen, O 2. Behavior of ozone shows more "faces" according to the circumstances. The ozone layer protects the Earth from damaging ultraviolet (UV) light; therefore, it is an inevitable compound to save life on Earth. Its applications also present benefits for human welfare. Thanks to its strong oxidizing properties as well as bactericidal, virucidal, and fungicidal effects, it is widely used for water disinfection, wastewater treatment, in various industrial fields, for example, in the pulp and paper industry and the textile industry and progressively for medical purposes as well. Unfortunately, there are also circumstances, mainly due to the activities of humans, when ozone behaves contrary to the mentioned benefits, with negative and harmful influence on human health, and life in nature, as well as to material environment [1]. While stratospheric ozone protects biological life on Earth, ozone in the troposphere is toxic to human health, plants, and trees and it also damages various materials [2]. One may have noticed a smell in the air after thunders and lightning bolts. The pure odor was most likely to the actual ozone formed by flashing atmospheres. Because ozone is unstable and cannot be stored successfully, it must be generated at the application site. To produce ozone sufficiently in the water, wastewater, and sewage treatment plant, ozone generators are used. The simplest method can be ozone generated by the passage of oxygen or oxygencontaining air through the area of electric discharge or spark. Ozone is a subject of interest and research for a number of reasons. This chapter will deal briefly with related aspects of stratospheric and tropospheric ozone as well as with utilization of ozone in practice.