The detection of rotor failures in synchronous motors is a matter of primordial interest in many industrial sites where these machines are critical assets. However, due to the particular operation of these motors, most conventional techniques relying on steady-state analysis, commonly used in other electric machines, are not applicable to such motors. In this context, it has been recently proven that the analysis of different quantities under transient operation of the motor and, more specifically, under motor starting can provide crucial information for the diagnosis of many faults. This work proposes the timefrequency analysis of stray fluxes and currents to detect field winding faults in synchronous motors. The potential consequences of this fault can be catastrophic for the motor integrity, so that the detection of its presence in its early stages can be of critical importance for the industry. The results included in this paper prove the usefulness of the transient analysis of such non-invasive quantities not only to detect the presence of the field winding fault but also to set a starting point to determine its severity.