Stream-based Active Learning with Verification Latency in Non-stationary Environments
Andrea Castellani,
Sebastian Schmitt,
Barbara Hammer
Abstract:Data stream classification is an important problem in the field of machine learning. Due to the non-stationary nature of the data where the underlying distribution changes over time (concept drift), the model needs to continuously adapt to new data statistics. Stream-based Active Learning (AL) approaches address this problem by interactively querying a human expert to provide new data labels for the most recent samples, within a limited budget. Existing AL strategies assume that labels are immediately availabl… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.