2023
DOI: 10.3390/math11173739
|View full text |Cite
|
Sign up to set email alerts
|

Stream Convolution for Attribute Reduction of Concept Lattices

Jianfeng Xu,
Chenglei Wu,
Jilin Xu
et al.

Abstract: Attribute reduction is a crucial research area within concept lattices. However, the existing works are mostly limited to either increment or decrement algorithms, rather than considering both. Therefore, dealing with large-scale streaming attributes in both cases may be inefficient. Convolution calculation in deep learning involves a dynamic data processing method in the form of sliding windows. Inspired by this, we adopt slide-in and slide-out windows in convolution calculation to update attribute reduction.… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?