Washington County occupies an area of 864 square miles in southwestern Pennsylvania and lies within the Pittsburgh Plateaus Section of the Appalachian Plateaus physiographic province. About 69 percent of the county population is served by public water-supply systems, and the Monongahela River is the source for 78 percent of the public-supply systems. The remaining 31 percent of the population depends on wells, springs, and cisterns for its domestic water supply. The sedimentary rocks of Pennsylvanian and Permian age that underlie the county include sandstone, siltstone, limestone, shale, and coal. The mean reported yield of bedrock wells ranges from 8.8 gallons per minute in the Pittsburgh .Formation to 46 gallons per minute in the Casselman Formation. Annual water-level fluctuations usually range from less than 3 ft (feet) beneath a valley to about 16 ft beneath a hilltop. Average hydraulic conductivity ranges from 0.01 to 18 ft per day. Water-level fluctuations and aquifer-test results suggest that most ground water circulates within 150 ft of land surface. A three-dimensional computer flow-model analysis indicates 96 percent of the total groundwater recharge remains in the upper 80 to 110 ft of bedrock (shallow aquifer system). The regional flow system (more than 250ft deep in the main valley) receives less than 0.1 percent of the total groundwater recharge from the Brush Run basin. The predominance of the shallow aquifer system is substantiated by driller's reports, which show almost all water bearing zones are less than 150ft below land surface. The modeling of an unmined basin showed that the hydrologic factors that govern regional groundwater flow can differ widely spatially but have little effect on the shallow aquifers that supply water to most domestic wells. However, the shallow aquifers are sensitive to hydrologic factors within this shallow aquifer system (such as groundwater recharge, hydraulic conductivity of the streamaquifer interface, and hydraulic conductivity of the aquifer). A vertical fracture zone would probably increase groundwater availability within the zone and would probably result in a lower head in the shallow aquifers in an upland draw area and an increased head in a valley. l Streams in the northern and western parts of the county drain to the Ohio River and streams in the eastern and southern parts of the county drain to the Monongahela River. The computed 7-day, 10-year low-flow frequencies for the surface-water sites ranged from 0.0 to 55 x 10-3 cubic feet per second per square mile. The lowest low-flow discharges per square mile were in the south-central and southwestern parts of the county. The highest low-flow discharges per square mile were in the eastern and northern parts of the county. The annual water loss at five gaged streams ranged from 52 to 75 percent of the total precipitation. The loss resulted from evaporation, transpiration, diversion, mines, groundwater outflow from the system, and plant and animal consumption. Geographv Washington County is near the southweste...