2024
DOI: 10.1007/s12145-024-01454-9
|View full text |Cite
|
Sign up to set email alerts
|

Streamflow forecasting with deep learning models: A side-by-side comparison in Northwest Spain

Juan F. Farfán-Durán,
Luis Cea

Abstract: Accurate hourly streamflow prediction is crucial for managing water resources, particularly in smaller basins with short response times. This study evaluates six deep learning (DL) models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), and their hybrids (CNN-LSTM, CNN-GRU, CNN-Recurrent Neural Network (RNN)), across two basins in Northwest Spain over a ten-year period. Findings reveal that GRU models excel, achieving Nash-Sutcliffe Efficiency (NSE) scor… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 52 publications
0
0
0
Order By: Relevance