2019
DOI: 10.48550/arxiv.1911.05712
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Streaming Bayesian Inference for Crowdsourced Classification

Abstract: A key challenge in crowdsourcing is inferring the ground truth from noisy and unreliable data. To do so, existing approaches rely on collecting redundant information from the crowd, and aggregating it with some probabilistic method. However, oftentimes such methods are computationally inefficient, are restricted to some specific settings, or lack theoretical guarantees. In this paper, we revisit the problem of binary classification from crowdsourced data. Specifically we propose Streaming Bayesian Inference fo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 7 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?