Abstract:Although the generation of large points clouds from geomatic techniques allows us to realize the topography and appearance of the terrain and its infrastructures (e.g., roads, bridges, buildings, etc.), all these 3D point clouds require an unavoidable step to be conveniently treated: the definition of the surface that connects these points in space through digital surface models (DSM). In addition, these point clouds sometimes have associated attributes and geometric constraints such as breaklines and/or exclusion areas, which require the implementation of efficient triangulation techniques that can cope with a high volume of information. This article aims to make a comparative analysis of different Delaunay triangulation libraries, open or with academic versions available for the scientific community, so that we can assess their suitability for the modeling of the territory and its infrastructures. The comparison was carried out from a two-fold perspective: (i) to analyze and compare the computational cost of the triangulation; (ii) to assess the geometric quality of the resulting meshes. The different techniques and libraries have been tested based on three different study cases and the corresponding large points clouds generated. The study has been useful to identify the limitations of the existing large point clouds triangulation libraries and to propose statistical variables that assess the geometric quality of the resulting DSM.