Coassemble diverse functional nanomaterials with carbon nanotubes (CNTs) to form three-dimensional (3D) porous CNTs hybrid architectures (CHAs) are potentially desirable for applications in energy storage, flexible conductors, and catalysis, because of diverse functionalities and synergistic effects in the CHAs. Herein, we report a scalable strategy to incorporate various functional nanomaterials with N-doped CNTs (N-CNTs) into such 3D porous CHAs on the polyurethane (PU) sponge skeletons via layer-by-layer (LbL) assembly. To investigate their properties and applications, the specific CHAs based on N-CNTs and Ag nanoparticles (NPs), denoted as PU-(N-CNTs/Ag NPs)n, are developed. The unique binary structure enables these specific CHAs conductors to possess reliable mechanical and electrical performance under various elastic deformations as well as excellent hydrophilicity. Moreover, they are employed as strain-gauge sensor and heterogeneous catalyst, respectively. The sensor could detect continuous signal, static signal, and pulse signal with superior sustainability and reversibility, indicating an important branch of electromechanical devices. Furthermore, the synergistic effects among N-CNTs, Ag NPs, and porous structure endow the CHAs with excellent performance in catalysis. We have a great expectation that LbL assembly can afford a universal route for incorporating diverse functional materials into one structure.