BlastAlloy160 (BA-160) steel, with a nominal composition of Fe-0.05C-3.65Cu-6.5Ni-1.84Cr-0.6Mo-0.1V (wt pct), is strengthened by Cu-rich precipitates and M 2 C carbides. This alloy was subjected to several weldability tests to assess its susceptibility to certain weld cracking mechanisms. Hot ductility testing revealed a liquation cracking temperature range (LCTR) of 148 K (-125°C), which suggested moderate susceptibility to heat-affected zone (HAZ) liquation cracking. The enrichment of Ni and Cu was measured along the prior austenite grain boundaries in the simulated partially melted zone (PMZ) and was consistent with similar enrichment at interdendritic boundaries of the simulated fusion zone (FZ). Good wetting and penetration of liquid films along the austenite grain boundaries of the PMZ was also observed. Associated with that finding were thermodynamic calculations indicating a completely austenitic (face-centered cubic) microstructure at elevated temperatures. In testing to determine reheat cracking susceptibility, ductility values of 41 to 78 pct RA were established for the 723 K to 973 K (450°C to 700°C) temperature range. The good ductility values precluded susceptibility to reheat cracking according to the test criterion. Dilatometric measurements and thermodynamic calculations revealed the formation of austenite in the reheat cracking temperature range, which was attributed to the high Ni content of the BA-160 alloy.