Abstract:In this study, reactive magnetron sputtering was applied for preparing NbCN-Ag films with different Ag additions. Ag contents in the as-deposited NbCN-Ag films were achieved by adjusting Ag target power. The composition, microstructure, mechanical properties, and tribological properties were characterized using energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), high resolution transmission electron microscopy (HRTEM), Raman spectrometry, nano-indentation, and high-temperature sliding wear tests. Results indicated that face-centered cubic (fcc) NbN, hexagonal close-packed (hcp) NbN and fcc Ag, amorphous C and amorphous CN x phase co-existed in the as-deposited NbCN-Ag films. After doping with 2.0 at.% Ag, the hardness and elastic modulus reached a maximum value of 33 GPa and 340 GPa, respectively. Tribological properties were enhanced by adding Ag in NbCN-Ag films at room temperature. When the test temperature rose from 300 to 500 • C, the addition of Ag was found beneficial for the friction properties, showing a lowest friction coefficient of~0.35 for NbCN-12.9 at.% Ag films at 500 • C. This was mainly attributed to the existence of AgO x , NbO x , and AgNbO x lubrication phases that acted as solid lubricants to modify the wear mechanism.