Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) is one of the important zoonotic and opportunistic pathogens. In recent years, there has been growing evidence that supports the potential role of S. zooepidemicus in severe diseases in horses and other animals, including humans. Furthermore, the clinical isolation and drug resistance rates of S. zooepidemicus have been increasing yearly, leading to interest in its in-depth genomic analysis. In order to deepen the understanding of the S. zooepidemicus characteristics and genomic features, we investigated the genomic islands, mobile genetic elements, virulence and resistance genes, and phenotype of S. zooepidemicus strain ZHZ 211 (ST147), isolated from an equine farm in China. We obtained a 2.18 Mb, high-quality chromosome and found eight genomic islands. According to a comparative genomic investigation with other reference strains, ZHZ 211 has more virulence factors, like an iron uptake system, adherence, exoenzymes, and antiphagocytosis. More interestingly, ZHZ 211 has acquired a mobile genetic element (MGE), prophage Ph01, which was found to be in the chromosome of this strain and included two hyaluronidase (hyl) genes, important virulence factors of the strain. Moreover, two transposons and two virulence (virD4) genes were found to be located in the same genome island of ZHZ 211. In vitro phenotypic results showed that ZHZ 211 grows faster and is resistant to clarithromycin, enrofloxacin, and sulfonamides. The higher biofilm-forming capabilities of ZHZ 211 may provide a competitive advantage for survival in its niche. The results expand our understanding of the genomic, pathogenicity, and resistance characterization of Streptococcus zooepidemicus and facilitate further exploration of its molecular pathogenic mechanism.