Catalpol, an iridoid glycoside, exists in the root of Radix Rehmanniae. Some studies have shown that catalpol has a remarkable hypoglycemic effect in the streptozotocininduced diabetic model, but the underlying mechanism for this effect has not been fully elucidated. Because mitochondrial dysfunction plays a vital role in the pathology of diabetes and because improving mitochondrial function may offer a new approach for the treatment of diabetes, this study was designed. Catalpol was orally administered together with metformin to high-fat diet/streptozotocin (HFD/STZ)-induced diabetic mice daily for 4 weeks. Body weight (BW), fasting blood glucose (FBG) level, and glucose disposal (IPGTT) were measured during or after the treatment. The results showed a dose-dependent reduction of FBG level with no apparent changes in BW through four successive weeks of catalpol administration. Catalpol treatment substantially reduced serum total cholesterol and triglyceride levels in the diabetic mice. In addition, catalpol efficiently increased mitochondrial ATP production and reversed the decrease of mitochondrial membrane potential and mtDNA copy number in skeletal muscle tissue. Furthermore, catalpol (200 mg/kg) rescued mitochondrial ultrastructure in skeletal muscle, as detected with transmission electron microscopy. The relative mRNA level of peroxisome proliferator-activated receptor gamma co-activator 1 (PGC1) a was significantly decreased in muscle tissue of diabetic mice, while this effect was reversed by catalpol, resulting in a dose-dependent up-regulation. Taken together, we found that catalpol was capable of lowering FBG level via improving mitochondrial function in skeletal muscle of HFD/STZ-induced diabetic mice.