In this paper, the influence of functional elastomeric substrate-supported layers for enhancing potential resistance capability against localized plastic failure of advanced high strength steels is considered based on a localized necking model of vertex theory. Application of this structure leads to postponing the plastic instability of the metallic part. By defining diffuse and localized modes of deformation in a general framework, the theoretical models are developed to predict necking limits at several stress states. In addition, the results of the Hookean and neo-Hookean elastomers are compared in terms of strain hardening with the anisotropy parameter of Hill’s yield criteria. Since necking band angle (NBA) is a principal factor for the necking prediction, its effect on bifurcation events is evaluated specifically for different ratios of stress rate, and quadratic and non-quadratic yield criteria. This analysis is performed by proposing a supported and yield-dependent necking bound angle (YD-NBA). All considerations are done by providing equilibrium conditions governed over the NBA. Finally, obtained results indicate good agreements between several theoretical considerations and experimental data.