Additive manufacturing (AM) is becoming an important alternative to traditional processes. AM technology shows several advantages in literature, and its use increases in aerospace, automotive and biomedicine. Time reduction in design-to-manufacturing cycle, customization, capability to generate complex shapes in one piece and ability to imitate low-weight bio-inspired shapes are the strength of designs based on AM. Due to its potentials, major progresses were done in AM, thanks to technology evolution and increased computational power. With regard to AM, voxelization can be defined as part’s discretization in hexahedral elements, as done with pixels in 2D image. Voxels are used to speed-up geometry and algebraic manipulation thanks to their inherent advantages. This paper analyses advantages and criticalities of AM and voxel manipulation through a systematic literature review methodology. The analyses are based upon the filtering of a huge amount of publications available in literature up to obtaining the most significant 25 studies published in the last 5 years. The study’s main result is the technology gap’s identification, i.e. where AM and voxelization still need improvements, thus providing the reader with suggestions about possible further studies. Computer elaboration power and voxel discretization algorithms are suggested being key issues in AM’s further development.