Downsizing is a more and more widespread trend in many industrial sectors, and, among the others, the automotive industry is pushing the design of its components towards increasingly compact, lightweight, efficient, and reliable solutions. In the past, the drivetrains for automotive were designed and manufactured with gears having modules in the range 3 to 10. In this respect, the main actual European standards for gear design such as ISO 6336:2019 (based on the DIN 3990:1987) are validated in the 3 to 10 mm range only. Moreover, it is well known that, by increasing the gear size, the gear size factor for tooth bending YX reduces. However, nowadays the advances in terms of materials and design knowledge have made possible the realization of miniaturized gearboxes with gears having normal modules below 3 mm with comparable (or better) reliability. In this scenario, understanding how the size affects (positively) the load-carrying capacity for tooth root bending for small modules below 5 mm is fundamental to maximize the design effectiveness in case of downsizing of the drivetrains. In this paper an experimental study was performed on small gears made of 39NiCrMo3 having a normal module of 2 mm to verify the load-carrying capacity for tooth root bending. Based on the experimental evidences and additional data from literature and past studies by the author, an extended formula for the size factor YX (according to ISO 6336) is proposed.