. (2005). Complex quantum dot arrays formed by combination of self-organized anisotropic strain engineering and step engineering on shallow patterned substrates. Journal of Applied Physics, 97(1), 014304-1/5. [014304]. DOI: 10.1063/1.1823578
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. One-dimensional (In,Ga)As quantum dot (QD) arrays are created on planar singular, vicinal, and shallow mesa-patterned GaAs (100) substrates by self-organized anisotropic strain engineering of an ͑In, Ga͒As/ GaAs quantum wire (QWR) superlattice template in molecular beam epitaxy. On planar singular substrates, highly uniform single QD arrays along ͓0−11͔ are formed. On shallow ͓0−11͔ and [011] stripe-patterned substrates, the generated type-A and -B steps distinctly affect the surface migration processes which are crucial for QWR template development, i.e., strain-gradient-driven In adatom migration along [011] and surface-reconstruction-induced Ga/ In adatom migration along ͓0−11͔. In the presence of both type-A and -B steps on vicinal substrates misoriented towards [101], the direction of adatom migration is altered to rotate the QD arrays. This establishes the relationship between self-organized anisotropic strain and step engineering, which is exploited on shallow zigzag-patterned substrates for the realization of complex QD arrays and networks with well-positioned bends and branches, exhibiting high structural and optical quality.