As large-scale depletion of shallow coal seams and increasing mining depths intensify, the frequency and intensity of mining-induced earthquake events have significantly risen. Due to the complex formation mechanisms of high-energy mining-induced earthquakes, precise identification and early warning cannot be achieved with a single monitoring method, posing severe challenges to coal mine safety. Therefore, this study conducts an in-depth risk analysis of two high-energy mining-induced earthquake events at the 3308 working face of Yangcheng Coal Mine, integrating microseismic monitoring, stress monitoring, and seismic source mechanism analysis. The results show that, by combining microseismic monitoring, seismic source mechanism inversion, and dynamic stress analysis, critical disaster-inducing factors such as fault activation, high-stress concentration zones, and remnant coal pillars were successfully identified, further revealing the roles these factors play in triggering mining-induced earthquakes. Through multi-dimensional data integration, especially the effective detection of the microseismic “silent period” as a key precursor signal before high-energy mining-induced earthquake events, a critical basis for early warning is provided. Additionally, by analyzing the spatiotemporal distribution patterns of different risk factors, high-risk areas within the mining region were identified and delineated, laying a foundation for formulating precise prevention and control strategies. The findings of this study are of significant importance for mining-induced earthquake risk management, providing effective assurance for safe production in coal mines and other mining environments with high seismic risks. The proposed analysis methods and control strategies also offer valuable insights for seismic risk management in other mining industries, ensuring safe operations and minimizing potential losses.