Abstract:Although over 80 cytochrome P450 (CYP) encoding genes have been identified in the genome of the nematode Caenorhabditis elegans very little is known about their involvement in biotransformation. This paper demonstrates a concentration dependent relationship of C. elegans CYP35A1, A2, A5, and C1 gene expression in response to four organic xenobiotics, namely atrazine, PCB52, fluoranthene, and lansoprazole. The toxicity of these xenobiotics was determined using a reproduction assay. CYP-specific messenger RNA expression was analyzed by semi-quantitative RT-PCR resulting in a strongly increasing, concentration-dependent induction well below the EC 50 for reproduction. For PCB52, approximately 0.5 % of the EC 50 induces a two-fold increase of CYP35 gene expression. Using a double mutant and multiple RNAi of CYP35A/C it was possible to diminish the reproduction decline caused by PCB52 and fluoranthene.