Insulation material is a key component of electrical equipment in satellites; its electrical properties determine the reliability and lifetime of the whole satellite. High-energy radioactive rays in space affect the molecular structure of the polymeric insulating materials. Under the action of plasma, high energy particles, along with the magnetic fields experienced in orbits, electric charges get injected into and trapped by the insulating material creating distortions in the electric field and even electrostatic discharges. Polyimides have been widely used for insulation in spacecraft. Choosing Co-60 gamma ray with irradiation doses of 1 MGy and 5 MGy to simulate the radiation environment of space, we investigated the effect of radiation on charging behaviour. The thermal stimulated current (TSC) from a high electric field over a wide range of temperatures was measured from which the activation energy was calculated. These results for the two sources show that the percentage increase in total charge was 133.3% and 119.4%. The γ, β 3 , and α charge peaks of specimens after an irradiation dose of 1 MGy rose. In comparison, the β 2 peak of the 5 MGy-dosed specimens was enhanced. Also, there is almost no change in the γ, β 3 , and α peaks. To understand the mechanism behind the TSC changes, the resulting physicochemical characteristics of an irradiated specimen were observed employing various analyses of chemical characteristics (x-ray photoelectron spectroscopy, differential scanning calorimetry and x-ray diffraction). Compared with the non-dosed specimen, the relative content of C-N and the glass transition temperature of the 1 MGy sample decreased, and the crystallinity increased, thus increasing the γ and α peak intensities. Compared with the 1 MGy sample, only the glass transition temperature had risen, thereby enhancing the β peak intensity. With the foregoing, a theoretical base for the selection and modification of insulation materials for spacecraft is provided.