In this paper, the dependent competing risks’ model is considered in the constant-stress accelerated life test under the adaptive type-II progressive hybrid-censored scheme. The dependency between failure causes is modeled by Marshall–Olkin bivariate Gompertz distribution. The scale and shape parameters in the model both change with the stress levels, and the failure causes of some test units are unknown. Then, the maximum likelihood estimations and approximation confidence intervals of the unknown parameters are considered. And, the necessary and sufficient condition is established for the existence and uniqueness of the maximum likelihood estimations for unknown parameters. The Bayes approach is also employed to estimate the unknown parameters under suitable prior distributions. The Bayes estimations and highest posterior credible intervals of the unknown parameters are obtained. Finally, a simulation experiment has been performed to illustrate the methods proposed in this paper.