We examine two criteria for balance of a gain graph, one based on binary cycles and one on circles. The graphs for which each criterion is valid depend on the set of allowed gain groups. The binary cycle test is invalid, except for forests, if any possible gain group has an element of odd order. Assuming all groups are allowed, or all abelian groups, or merely the cyclic group of order 3, we characterize, both constructively and byy Part of this research was conducted at