The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actinbinding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phasesegregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization.T he cell surface mediates interactions between the cell and the outside world by serving as the site for signal transduction. It also facilitates the uptake and release of cargo and supports adhesion to substrates. These diverse roles require that the cell surface components involved in each function are spatially and temporally organized into domains spanning a few nanometers (nanoclusters) to several micrometers (microdomains). The cell surface itself may be considered as a fluid-lipid bilayer wherein proteins are embedded (1). In the living cell, this multicomponent system is supported by an actin cortex, composed of a branched network of actin and a collection of filaments (2-4).Current models of membrane organization fall into three categories: those invoking lipid-lipid and lipid-protein interactions in the plasma membrane [e.g., the fluid mosaic model (1, 5) and the lipid raft hypothesis (6)], or those that appeal to the membrane-associated actin cortex (e.g., the picket fence model) (7), or a combination of these (8, 9). Although these models based on thermodynamic equilibrium principles have successfully explained the organization and dynamics of a range of membrane components and molecules, there is a growing class of phenomena that appears inconsistent with chemical and thermal equilibrium, which might warrant a different explanation. These include aspects of the organization and dynamics of outer leaflet...