The task graph cost-optimal scheduling problem consists in scheduling a certain number of interdependent tasks onto a set of heterogeneous processors (characterized by idle and running rates per time unit), minimizing the cost of the entire process. This paper provides a novel formulation for this scheduling puzzle, in which an optimal solution is computed through a sequence of binate covering problems, hinged within a bounded model checking paradigm. In this approach, each covering instance, providing a min-cost trace for a given schedule depth, can be solved with several strategies, resorting to minimum-cost satisfiability solvers or pseudo-Boolean optimization tools. Unfortunately, all direct resolution methods show very low efficiency and scalability. As a consequence, we introduce a specialized method to solve the same sequence of problems, based on a traditional all-solution SAT solver. This approach follows the "circuit cofactoring" strategy, as it exploits a powerful technique to capture a large set of solutions for any new SAT counterexample. The overall method is completed with a branchand-bound heuristic which evaluates lower and upper bounds of the schedule length, to reduce the state space that has to be visited. Our results show that the proposed strategy significantly improves the blind binate covering schema, and it outperforms general purpose state-of-the-art tools.