2022
DOI: 10.1016/j.cej.2021.134038
|View full text |Cite
|
Sign up to set email alerts
|

Stretchable vertical graphene arrays for electronic skin with multifunctional sensing capabilities

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
13
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 20 publications
(14 citation statements)
references
References 61 publications
0
13
0
Order By: Relevance
“…Mechanical stimuli can change the distance or the overlapping area between the two electrodes, and the change of distance and area can convert into capacitance change to realize pressure sensing. The acquisition of high sensitivity requires flexible electrode materials and dielectric materials so that even Capacitive Sensors Air chambers into polydimethylsiloxane 0.01-0.03 kPa 0.82 kPa −1 31.2 ms >10 000 [111] All-fibrous multilayer nanostructure 0-135 kPa 0.32 V kPa −1 20 s >10 000 [74] Ionic liquid _ 8.21 kPa −1 8000 [112] MXene/P(VDF-TrFE-CFE) 0.04 to 88.89 kPa 16.0 kPa −1 229 ms ≈1500 [119] PSeD-U <2 kPa 2-10 kPa 0.16 kPa −1 0.03 kPa −1 _ 1000 [164] PVDF/NMP, micro-structured PDMS electrode 0-130 Pa 30.2 kPa −1 at 0.7 Pa 25 s 100 000 [113] Deformable ionic mechanotransducer array _ 2.65 nF kPa −1 47 ms 200 [121] LMs@PDMS 3.87% 0.46 kPa −1 _ _ [120] CB/PDMS 0-0.2 kPa 0.2-1.5 kPa 35 kPa −1 6.6 kPa −1 _ 100 [123] Ag NW/flower/Ag NW 0.6 Pa to 115 kPa 1.54 kPa −1 _ 5000 [165] Piezoresistive sensors MXene@fabric-based Up to 150 kPa 6.31 kPa −1 300 ms 2000 [166] Vertical graphene arrays 2.5 Pa to 1.1 MPa 2.14 kPa − 1 6.7 ms 2000 [138] Zinc oxide nanorod 0-100 kPa 0.095 kPa − 1 140 ms _ [144] Thermoplastic polyurethane/polypyrrole/polydopamine/space fabric 0-10 kPa 97.28 kPa −1 60 ms >500 [167] 3D poly(3,4-ethylenedioxythiophene) coated wrinkled nanofiber film 0-3 kPa 397.54 kPa −1 80 ms 16 500 [168] Graphene oxide self-wrapped Copper nanowire networks 0.1-15 kPa 0.144 kPa −1 150 ms 1000 [169] CNTs-UPy/PUa THF 0-6.1 kPa 8.7 kPa −1 40 ms 10 000 [93] Polyacrylonitrile, cellulose, and MXene 0-50 kPa 179.1 kPa −1 _ 10 000 [136] Carbon black/polyaniline nanoparticles/thermoplastic polyurethane fil 0-680% 0.03% 80 ms 10 000 [47] Serpentine Ti/Au metal traces 1-25 kPa 3.78 kPa −1 200 ms 10 000 [67] MXene nanosheets and Fe 3 O 4 nanoparticles 0-2.5 kPa 5.53 kPa −1 62.2 ms 2500 [41] Poly(vinyl alcohol)/poly(vinylidene fluoride) nanofibers spider web structure 0-135 kPa 0.48 V kPa −1 16 s _ [170] Silicon rubber thin film after Ag NW deposition and PEDOT:PSS coating 0-2 kPa 138.0 kPa −1 128 ms _ [140] Hair-epidermis-dermis aerogel electrode 100 Pa to 30 kPa 137.7 kPa −1 80 ms 10 000 [171] Cellulose/carbon nanotube fiber 0-400 kPa 9.364 kPa −1 <2 ms 10 000…”
Section: Capacitive Tactile Sensorsmentioning
confidence: 99%
“…Mechanical stimuli can change the distance or the overlapping area between the two electrodes, and the change of distance and area can convert into capacitance change to realize pressure sensing. The acquisition of high sensitivity requires flexible electrode materials and dielectric materials so that even Capacitive Sensors Air chambers into polydimethylsiloxane 0.01-0.03 kPa 0.82 kPa −1 31.2 ms >10 000 [111] All-fibrous multilayer nanostructure 0-135 kPa 0.32 V kPa −1 20 s >10 000 [74] Ionic liquid _ 8.21 kPa −1 8000 [112] MXene/P(VDF-TrFE-CFE) 0.04 to 88.89 kPa 16.0 kPa −1 229 ms ≈1500 [119] PSeD-U <2 kPa 2-10 kPa 0.16 kPa −1 0.03 kPa −1 _ 1000 [164] PVDF/NMP, micro-structured PDMS electrode 0-130 Pa 30.2 kPa −1 at 0.7 Pa 25 s 100 000 [113] Deformable ionic mechanotransducer array _ 2.65 nF kPa −1 47 ms 200 [121] LMs@PDMS 3.87% 0.46 kPa −1 _ _ [120] CB/PDMS 0-0.2 kPa 0.2-1.5 kPa 35 kPa −1 6.6 kPa −1 _ 100 [123] Ag NW/flower/Ag NW 0.6 Pa to 115 kPa 1.54 kPa −1 _ 5000 [165] Piezoresistive sensors MXene@fabric-based Up to 150 kPa 6.31 kPa −1 300 ms 2000 [166] Vertical graphene arrays 2.5 Pa to 1.1 MPa 2.14 kPa − 1 6.7 ms 2000 [138] Zinc oxide nanorod 0-100 kPa 0.095 kPa − 1 140 ms _ [144] Thermoplastic polyurethane/polypyrrole/polydopamine/space fabric 0-10 kPa 97.28 kPa −1 60 ms >500 [167] 3D poly(3,4-ethylenedioxythiophene) coated wrinkled nanofiber film 0-3 kPa 397.54 kPa −1 80 ms 16 500 [168] Graphene oxide self-wrapped Copper nanowire networks 0.1-15 kPa 0.144 kPa −1 150 ms 1000 [169] CNTs-UPy/PUa THF 0-6.1 kPa 8.7 kPa −1 40 ms 10 000 [93] Polyacrylonitrile, cellulose, and MXene 0-50 kPa 179.1 kPa −1 _ 10 000 [136] Carbon black/polyaniline nanoparticles/thermoplastic polyurethane fil 0-680% 0.03% 80 ms 10 000 [47] Serpentine Ti/Au metal traces 1-25 kPa 3.78 kPa −1 200 ms 10 000 [67] MXene nanosheets and Fe 3 O 4 nanoparticles 0-2.5 kPa 5.53 kPa −1 62.2 ms 2500 [41] Poly(vinyl alcohol)/poly(vinylidene fluoride) nanofibers spider web structure 0-135 kPa 0.48 V kPa −1 16 s _ [170] Silicon rubber thin film after Ag NW deposition and PEDOT:PSS coating 0-2 kPa 138.0 kPa −1 128 ms _ [140] Hair-epidermis-dermis aerogel electrode 100 Pa to 30 kPa 137.7 kPa −1 80 ms 10 000 [171] Cellulose/carbon nanotube fiber 0-400 kPa 9.364 kPa −1 <2 ms 10 000…”
Section: Capacitive Tactile Sensorsmentioning
confidence: 99%
“…Yao and co-workers employed a facile approach to fabricate graphene arrays on a latex film to develop an eskin. Their research exploited not only morphological properties, but electronic and optical properties of nanomaterials used to fabricate a highly flexible e-skin with multifunctional sensing abilities comparable to those found on human skin [62]. In other studies [63,64], piezoresistive sensors exhibiting high-sensitivity were fabricated and embedded in a prosthetics and intelligent robotics.…”
Section: Prosthetic Applicationsmentioning
confidence: 99%
“…Hence, the fundamental function of an e-skin is to mimic this pressure sensitivity. To achieve this, various methods are exploited to fabricate e-skin with different modes, including resistive [ 85 ], capacitive [ 86 ], optical [ 87 ], and piezoelectric methods [ 88 , 89 ]. Table 2 summarizes the performance of these four types of e-skin.…”
Section: Wearable Biosensors Based On 2d Materialsmentioning
confidence: 99%
“…The e-skin is endowed with contactless temperature-sensing capability by the excellent light and thermal sensing properties of graphene. Moreover, the other properties, e.g., ultrafast responsiveness (6.7 ms) and resilience (13.4 ms), a broad pressure sensing range (2.5 Pa–1.1 MPa), a high sensitivity (2.14 kPa −1 ), and robust cyclability (2000), make the e-skin more similar to human skin [ 85 ].…”
Section: Wearable Biosensors Based On 2d Materialsmentioning
confidence: 99%