Please cite this article as: Ingebrigtsen, R., Lindgren, F., Steinsland, I., Spatial models with explanatory variables in the dependence structure. Spatial Statistics (2013), http://dx.doi.org/10. 1016/j.spasta.2013.06.002 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AbstractGeostatistical models have traditionally been stationary. However, physical knowledge about underlying spatial processes often require models with nonstationary dependence structures. Thus, there has been an interest in the literature to provide flexible models and computationally efficient methods for non-stationary phenomena. In this work, we demonstrate that the stochastic partial differential equation (SPDE) approach to spatial modelling provides a flexible class of non-stationary models where explanatory variables easily can be included in the dependence structure. In addition, the SPDE approach enables computationally efficient Bayesian inference with integrated nested Laplace approximations (INLA) available through the R-package r-inla. We illustrate the suggested modelling framework with a case study of annual precipitation in southern Norway, and compare a non-stationary model with dependence structure governed by elevation to a stationary model. Further, we use a simulation study to explore the annual precipitation models. We investigate identifiability of model parameters and whether the deviance information criterion (DIC) is able to distinguish datasets from the non-stationary and stationary models.