Hypergraph categories have been rediscovered at least five times, under various names, including well-supported compact closed categories, dgs-monoidal categories, and dungeon categories. Perhaps the reason they keep being reinvented is two-fold: there are many applications-including to automata, databases, circuits, linear relations, graph rewriting, and belief propagation-and yet the standard definition is so involved and ornate as to be difficult to find in the literature. Indeed, a hypergraph category is, roughly speaking, a "symmetric monoidal category in which each object is equipped with the structure of a special commutative Frobenius monoid, satisfying certain coherence conditions".Fortunately, this description can be simplified a great deal: a hypergraph category is simply a "cospan-algebra," roughly a lax monoidal functor from cospans to sets. The goal of this paper is to remove the scare-quotes and make the previous statement precise. We prove two main theorems. First is a coherence theorem for hypergraph categories, which says that every hypergraph category is equivalent to an objectwise-free hypergraph category. Second, we prove that the category of objectwisefree hypergraph categories is equivalent to the category of cospan-algebras.