STRIVE: Empowering a Low Power Tensor Processing Unit with Fault Detection and Error Resilience
Noel Daniel Gundi,
Sanghamitra Roy,
Koushik Chakraborty
Abstract:Rapid growth in Deep Neural Network (DNN) workloads has increased the energy footprint of the Artificial Intelligence (AI) computing realm. For optimum energy efficiency, we propose operating a DNN hardware in the Low-Power Computing (LPC) region. However, operating at LPC causes increased delay sensitivity to Process Variation (PV). Delay faults are an intriguing consequence of PV. In this paper, we demonstrate the vulnerability of DNNs to delay variations, substantially lowering the prediction accuracy. To o… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.