2020
DOI: 10.1007/978-3-030-65621-8_15
|View full text |Cite
|
Sign up to set email alerts
|

Stroke Prediction Using Machine Learning in a Distributed Environment

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0
4

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 18 publications
(10 citation statements)
references
References 8 publications
0
5
0
4
Order By: Relevance
“…In particular, the RF approach, an advanced implementation of decision trees, has outperformed many powerful learning techniques which have proven themselves to be popular in other fields. 41 Each tree in the ensemble is constructed from a sample drawn with a replacement from the training set in RFs. Besides, during the construction of a tree, when splitting each node, the best split is found either from all input features or from a random size subset.…”
Section: Methodsmentioning
confidence: 99%
“…In particular, the RF approach, an advanced implementation of decision trees, has outperformed many powerful learning techniques which have proven themselves to be popular in other fields. 41 Each tree in the ensemble is constructed from a sample drawn with a replacement from the training set in RFs. Besides, during the construction of a tree, when splitting each node, the best split is found either from all input features or from a random size subset.…”
Section: Methodsmentioning
confidence: 99%
“…Prediksi stroke pada pasien bertujuan untuk mengurangi potensi kematian yang disebabkan stroke. Model prediksi dengan, pembelajaran mesin telah diusulkan, antara lain menggunakan Chi-Square (Chi-2), Decision Tree [3], Two-Class Boosted Decision Tree [4], Naive Bayes, Support Vector Machine [5], Logistic Regression, Random Forest, Gradient Boosting [6]. Metoda yang diusulkan pada referensi tersebut diuji dengan menggunakan dataset yang berbeda-beda dan menghasilkan nilai akurasi yang bervariasi.…”
Section: Pendahuluanunclassified
“…Hal ini menjadi kurang tepat untuk membandingkan antar hasil dari berbagai algoritma machine learning tersebut. Hasil dari pengujian secara distributed environment didapatkan nilai tertinggi menggunakan algoritma Gradient Boosting dengan akurasi sebesar 94,49% [6].…”
Section: Pendahuluanunclassified
See 2 more Smart Citations