Motivated by a recent model for elasto-plastic evolutions that are driven by the flow of dislocations [12], this work develops a theory of space-time integral currents with bounded variation in time. Based on this, we further introduce the notion of Lipschitz deformation distance between integral currents, which arises physically as a (simplified) dissipation distance. Several results are obtained: A Helly-type compactness theorem, a deformation theorem, an isoperimetric inequality, and the equivalence of the convergence in deformation distance with the classical notion of weak* (or flat) convergence. Finally, we prove that the deformation distance agrees with the boundaryless Whitney flat metric. Physically, this means that two seemingly different ways to measure the dissipation of dislocation movements actually coincide.