2018
DOI: 10.5802/aif.3199
|View full text |Cite
|
Sign up to set email alerts
|

Strong Approximation with Brauer–Manin Obstruction for Toric Varieties

Abstract: For smooth open toric varieties, we establish strong approximation off infinity with Brauer-Manin obstruction.which is a closed subset of X(A k ). As discovered by Manin, class field theory implies that X(k) ⊆ X(A k ) B . Let Pr ∞ denote the projection from adelic points to finite adelic points.Definition 1.1. Let X be a scheme of finite type over k, and S a finite subset of Ω k . i) If X(k) is dense in X(A S k ), we say X satisfies strong approximation off S. ii) If X(k) is dense in Pr S (X(A k ) Br (X) ), we… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
17
0
6

Year Published

2018
2018
2024
2024

Publication Types

Select...
7

Relationship

3
4

Authors

Journals

citations
Cited by 17 publications
(23 citation statements)
references
References 15 publications
0
17
0
6
Order By: Relevance
“…Préliminaires sur les G-variétés. On rappelle un résultat pour les variétés toriques lisses ( [CX,Prop. 2.10]).…”
Section: 1unclassified
See 1 more Smart Citation
“…Préliminaires sur les G-variétés. On rappelle un résultat pour les variétés toriques lisses ( [CX,Prop. 2.10]).…”
Section: 1unclassified
“…L'approximation forte raffinée pour l'espace affine. Pour un ouvert U d'un espace affine A n satisfaisant codim(A n \ U, A n ) ≥ 2, l'approximation forte hors d'une place v 0 a été établie par Fei Xu et l'auteur dans [CX,Prop. 3.6], et raffinée lorsque la place v 0 est archimédienne dans [CX1,Prop.…”
Section: 1unclassified
“…In our previous paper , strong approximation with Brauer–Manin obstruction has been established for open toric varieties. It is natural to ask whether such a result is still true if the torus is replaced by a connected linear algebraic group.…”
Section: Introductionmentioning
confidence: 99%
“…It is natural to ask whether such a result is still true if the torus is replaced by a connected linear algebraic group. The basic idea in is to construct the standard toric varieties (see [, Definition 2.12]) by using the complement divisors. The group action provides a crucial relation of local integral points for almost all places (see [, Proposition 4.1]).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation