2012
DOI: 10.1186/1029-242x-2012-131
|View full text |Cite
|
Sign up to set email alerts
|

Strong convergence of composite general iterative methods for one-parameter nonexpansive semigroup and equilibrium problems

Abstract: In this paper, we introduce both explicit and implicit schemes for finding a common element in the common fixed point set of a one-parameter nonexpansive semigroup {T(s)|0 ≤ s <∞} and in the solution set of an equilibrium problems which is a solution of a certain optimization problem related to a strongly positive bounded linear operator. Strong convergence theorems are established in the framework of Hilbert spaces. As an application, we consider the optimization problem of a k-strict pseudocontraction mappin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
4
0

Year Published

2016
2016
2016
2016

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(4 citation statements)
references
References 28 publications
0
4
0
Order By: Relevance
“…This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results and method presented here improve and generalize the corresponding results and methods given in [5,9,10,15].…”
Section: Introductionmentioning
confidence: 77%
See 3 more Smart Citations
“…This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results and method presented here improve and generalize the corresponding results and methods given in [5,9,10,15].…”
Section: Introductionmentioning
confidence: 77%
“…Finally, we have the following consequence of Theorem 4.1, which generalizes Theorem 3.1 due to Xiao [15].…”
mentioning
confidence: 83%
See 2 more Smart Citations