2022
DOI: 10.48550/arxiv.2201.00413
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Strong convergence of the thresholding scheme for the mean curvature flow of mean convex sets

Abstract: In this work, we analyze Merriman, Bence and Osher's thresholding scheme, a time discretization for mean curvature flow. We restrict to the two-phase setting and mean convex initial conditions. In the sense of the minimizing movements interpretation of Esedoğlu and Otto we show the time-integrated energy of the approximation to converge to the time-integrated energy of the limit. As a corollary, the conditional convergence results of Otto and one of the authors become unconditional in the two-phase mean convex… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?