The strong chromatic index of a graph G, denoted χ ′ s (G), is the least number of colors needed to edge-color G so that edges at distance at most two receive distinct colors. The strong list chromatic index, denoted χ ′ ℓ,s (G), is the least integer k such that if arbitrary lists of size k are assigned to each edge then G can be edge-colored from those lists where edges at distance at most two receive distinct colors. We use the discharging method, the Combinatorial Nullstellensatz, and computation to show that if G is a subcubic planar graph with girth(G) ≥ 41 then χ ′ ℓ,s (G) ≤ 5, answering a question of Borodin and Ivanova [Precise upper bound for the strong edge chromatic number of sparse planar graphs, Discuss. Math. Graph Theory, 33(4), (2014) 759-770]. We further show that if G is a subcubic planar graph and girth(G) ≥ 30, then χ ′ s (G) ≤ 5, improving a bound from the same paper. Finally, if G is a planar graph with maximum degree at most four and girth(G) ≥ 28, then χ ′ s (G) ≤ 7, improving a more general bound of Wang and Zhao from [Odd graphs and its application on the strong edge coloring, arXiv:1412.8358] in this case.