Achieving low cost, safe, reproducible and high performance superconducting thin films of YBa2Cu3O7-δ is essential to bring this material to the energy market. Here, we report on the chemical solution deposition of YBa2Cu3O7-δ nanocomposites from environmentally benign precursors with a low-fluorine content. Preformed ZrO2 nanocrystals (3.5 nm) were stabilized in a methanolic precursor solution via two strategies: charge stabilization and steric stabilization. Counter-intuitively, charge stabilization did not result in high quality superconducting layers, while the steric stabilization resulted in highly reproducible nanocomposite thin films with a self-field Jc of 4-5 MA cm -² (77 K) and a much smaller decay of Jc with magnetic field compared to YBa2Cu3O7-δ without nanocrystals. In addition, these nanocomposite films show a strong pinning force enhancement and a reduced Jc anisotropy compared to undoped YBa2Cu3O7-δ films. Given the relationship between the nanocrystal surface chemistry and final nanocomposite performance, we expect these results to be also relevant for other nanocomposite research.-2 -