Strong Norm Error Bounds for Quasilinear Wave Equations Under Weak CFL-Type Conditions
Benjamin Dörich
Abstract:In the present paper, we consider a class of quasilinear wave equations on a smooth, bounded domain. We discretize it in space with isoparametric finite elements and apply a semi-implicit Euler and midpoint rule as well as the exponential Euler and midpoint rule to obtain four fully discrete schemes. We derive rigorous error bounds of optimal order for the semi-discretization in space and the fully discrete methods in norms which are stronger than the classical $$H^1\times L^2$$
… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.