The sequential nature of sequent calculus provides a simple definition of cut-elimination rules that duplicate or erase sub-proofs. The parallel nature of proof nets, instead, requires the introduction of explicit boxes, which are global and synchronous constraints on the structure of graphs. We show that logical polarity can be exploited to obtain an implicit, compact, and natural representation of boxes: in an expressive polarized dialect of linear logic, boxes may be represented by simply recording some of the polarity changes occurring in the box at level 0. The content of the box can then be recovered locally and unambiguously. Moreover, implicit boxes are more parallel than explicit boxes, as they realize a larger quotient. We provide a correctness criterion and study the novel and subtle cut-elimination dynamics induced by implicit boxes, proving confluence and strong normalization.