In this paper we study envy‐free division problems. The classical approach to such problems, used by David Gale, reduces to considering continuous maps of a simplex to itself and finding sufficient conditions for this map to hit the center of the simplex. The mere continuity of the map is not sufficient for reaching such a conclusion. Classically, one makes additional assumptions on the behavior of the map on the boundary of the simplex (e.g., in the Knaster–Kuratowski–Mazurkiewicz and the Gale theorem). We follow Erel Segal‐Halevi, Frédéric Meunier, and Shira Zerbib, and replace the boundary condition by another assumption, which has the meaning in economy as the possibility for a player to prefer an empty part in the segment partition problem. We solve the problem positively when n, the number of players that divide the segment, is a prime power, and we provide counterexamples for every n which is not a prime power. We also provide counterexamples relevant to a wider class of fair or envy‐free division problems when n is odd and not a prime power.