Abstract:In this paper, we study the strong consistency of a bias reduced kernel density estimator and derive a strongly consistent Kullback-Leibler divergence (KLD) estimator. As application, we formulate a goodness-of-fit test and an asymptotically standard normal test for model selection. The Monte Carlo simulation show the effectiveness of the proposed estimation methods and statistical tests.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.