Abstract.We study the statics and dynamics of a stable, mobile, self-bound three-dimensional dipolar matter-wave droplet created in the presence of a tiny repulsive three-body interaction. In frontal collision with an impact parameter and in angular collision at large velocities along all directions two droplets behave like quantum solitons. Such collision is found to be quasi elastic and the droplets emerge undeformed after collision without any change of velocity. However, in a collision at small velocities the axisymmeric dipolar interaction plays a significant role and the collision dynamics is sensitive to the direction of motion. For an encounter along the z direction at small velocities, two droplets, polarized along the z direction, coalesce to form a larger droplet − a droplet molecule. For an encounter along the x direction at small velocities, the same droplets stay apart and never meet each other due to the dipolar repulsion. The present study is based on an analytic variational approximation and a numerical solution of the mean-field Gross-Pitaevskii equation using the parameters of 52 Cr atoms.