In this study, a group of injectable composite pastes with a novel formulation consisting of two inorganic components: α-calcium sulfate hemihydrate (α-CSH, P/L = 1.8–2.1 g/ml) and calcium-deficient hydroxyapatite (CDHA, P/L = 0.1 g/ml) nanoparticles; and three biopolymers: gelatin (2, 4 wt. %), alginate (1, 1.5 wt. %), and chondroitin sulfate (0.5 wt. %) were carefully prepared and thoroughly characterized with commensurate characterizations. The composite sample composed of gelatin (2 wt. %), alginate (1.5 wt. %), chondroitin sulfate (0.5 wt. %), and also CDHA nanoparticles and α-CSH with P/L ratios of 0.1 and 2.1 g/ml, respectively, exhibited optimal properties in terms of injectability, anti-washout performance, and rheological characteristics. After 14 days of immersion of the chosen sample in the simulated body fluid medium, a dense layer of apatite was formed on the surface of the composite paste. The cellular in vitro tests, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT), alkaline phosphatase assay, 4ʹ,6-diamidino-2-phenylindole staining, and cellular attachment, revealed the desirable response of MG-63 cells to the composite paste. The chondroitin sulfate significantly improved the injectability, anti-washout performance, and cellular response of the samples. Considering the promising features of the composite paste prepared in this research work, it could be considered as an alternative injectable bioactive material for bone repair applications. [Formula: see text]