Graphenic carbon (GC) has been successfully synthesized from biomass (coconut shell charcoal) using the liquid phase exfoliation method. The dopants, in the form of light atoms such as boron (B-GC), were introduced with the aim of improving their magnetic properties. X-ray diffraction was used to identify the GC and B-GC, and the results show broad peaks around 24° and 43°, indicating the presence of graphene-like carbon structure. The bonding structure was also analyzed using X-ray photoelectron (XPS). It reveals the main bonds in GC consist of sp2, sp3, and C=O. While the B-GC sample shows an additional bond, namely the B-C bond, as an indicator of the successful doping process of B into the GC structure. Both GC and B-GC show weak room temperature ferromagnetism. Furthermore, these findings show that introducing boron atoms into the graphenic structure can improve magnetization.