Pectin or pectic substances are collective names for a group of closely associated polysaccharides present in plant cell walls where they contribute to complex physiological processes like cell growth and cell differentiation and so determine the integrity and rigidity of plant tissue. They also play an important role in the defence mechanisms against plant pathogens and wounding. As constituents of plant cell walls and due to their anionic nature, pectic polysaccharides are considered to be involved in the regulation of ion transport, the porosity of the walls and in this way in the control of the permeability of the walls for enzymes. They also determine the water holding capacity. The amount and composition of pectic molecules in fruits and vegetables and other plant produce strongly determine quality parameters of fresh and processed food products. Pectin is also extracted from suitable agro-by-products like citrus peel and apple pomace and used in the food industry as natural ingredients for their gelling, thickening, and stabilizing properties. Some pectins gain more and more interest for their health modulating activities. Endogenous as well as exogenous enzymes play an important role in determining the pectic structures present in plant tissue, food products, or ingredients at a given time. In this paper functional and structural characteristics of pectin are described with special emphasis on the structural elements making up the pectin molecule, their interconnections and present models which envisage the accommodation of all structural elements in a macromolecule. Attention is also given to analytical methods to study the pectin structure including the use of enzymes as analytical tools.
PectinPectin is one of the major plant cell wall components and probably the most complex macromolecule in nature, as it can be composed out of as many as 17 different monosaccharides containing more than 20 different linkages [1][2][3].
Plant functionality of pectinIn a plant, pectin is present in the middle lamella, primary cell and secondary walls and is deposited in the early stages of growth during cell expansion [4]. Its functionality to a plant is quite divers. First, pectin plays an important role in the formation of higher plant cell walls [5], which lend strength and support to a plant and yet are very dynamic structures [4]. In general, the polymeric composition of primary cell walls in dicotyledonous plants consists of approximately 35% pectin, 30% cellulose, 30% hemicellulose, and 5% protein [5]. Grasses contain 2-10% pectin and wood tissue ca 5%. In cell walls of some fruits and vegetables, the pectin content can be substantially higher and the protein content lower [6]. Second, pectin influences various cell wall properties such as porosity, surface charge, pH, and ion balance and therefore is of importance to the ion transport in the cell wall [7]. Furthermore, pectin oligosaccharides are known to activate plant defense